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ABSTRACT 

Inelastic fully diffractive production cross-sections are studied within 

the framework of a spin model version of RFT for ap > 1. Exact results 

are obtained for very large (I p and D = 1, a semiclassical approximation is 

used to probe all other LYE and D = 2. Absorption corrections cause the 

processes to be peripheral in impact-parameter and to exhibit clustering in 

rapidity. s channel unitarity constraints are shown to hold and in particular 

the Finkelstein-Kajantie paradox is resolved for any CUP > 1. 
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I. INTRODUCTION 

The study of hadronic diffraction scattering at high energy, small 

momentum transfer has acquired a suitable framework within Gribov’s 

Reggeon Field Theory. 
1 

The problem is particularly interesting for an 

input pomeron with intercept (Ye above one. 

It was shown that the region a0 > 1 is itself divided into two parts, 

partitioned by a critical intercept co denoted ~c. For cyo < a c the theory is simpi 

and its behavior is governed by the leading singularity--a pole below one. 

For ao= ac the character of the theory changes, this case has been studied 

extensively in the last years. 1, 2 It leads to a (log s)n behavior for the 

total cross-section. Recently the knowledge of the theory has been expanded 3, 4 

to encompass all cro > LY . 
C 

In this case the energy dependence saturates the 

F’roissart bound, namely ~TTCV log’ s. The method used to deal with the 

case (Y > (1 was a truncated lattice version of 
0 c 

RFT, which was solved 

exactly in some limits. The fact that this version indeed describes the 

infrared properties of RFT (with triple pomeron couplings 1 is supported 

by the analysis in ref. (3, 4). which smoothly reproduces the known perturbation 

theory results and by the analysis5 of the behavior of the truncated version 

near a 
C’ 

In this paper we pursue the study of this model by evaluating the 

amplitudes for inelastic diffractive exclusive production. The interest 

in this study is two-fold: First, the RFT is not obviously by construction 

s channel unitary. The result that for s cue> (Y all elastic partial 1 
C 

waves are finitely bound seems already to indicate the existance of 
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necessary elements of elastic s-channel unitarity in the model. However 

well-behaved elastic amplitudes have led in past models to violation of 

s-channel unitarity via inelastic diffraction production. In particular this 

has been shown in Ref. 6. In the absence of a rigorous proof for the existence 

6 
of s-channel unitarity, the resolution of the FK paradox for a0 > (yc will 

serve as a strong indication for consistency with s-channel unitarity of RFT. 

For Q~= (yc it has alre’ady’l been shown that the FK disease is removed. 

The second point of interest is in high energy phenomenology; quantum 

numbers permitting, the first candidate to govern the asymptotic behavior 

of any fixed multiplicity cross-section is multipomeron exchange between 

the produced particles. Thus understanding the features of inelastic 

diffractive production will lead to predictions of the energy behavior and 

t distributions of exclusive cross-sections. 

The results of our calculations show that although a0 is larger than 

(~c, due to the absorptive corrections, the energy behavior of each on 

will eventually become constant. There exists a finite range of coupling 

constants Qf the produced external particle for which the FK paradox is 

resolved (this coincides with the result 7, 8 obtained for cy = ac). 

In that case the total contribution of these processes to the total 

cross-section is energy independent while the total cross-section (as obtained 

from the elastic amplitude) is actually increasing. Therefore the main 

bulk of production processes is coming from events which are not fully 

diffractive and should be described in the framework of CRFT. 
9 



-4- FERMILAB-Rub-761 74-TIIY 

From the more phenomenological aspect, absorption has a strong 

impact on the particle distributions. It forces a very peripheral structure 

in impact parameter space and also clusters the produced particles in 

rapidity. 

The structure of the paper is as follows: In the next section we first 

recall the results necessary for our calculations from ref. 3, 4. Next 

we obtain the truncated lattice representations of composite (local) operators; 

special attention is paid to the mass insertion operator, which is relevant 

for the definition 7, 8 of inelastic diffractive amplitudes, We then comment 

on the relation of the spin model to RFT. In Section 3 we present an exact 

result for the inelastic diffractive processes in the limiting case 

a0 - 02 * and D = 1 (one t,ransverse dimension). This result is generalized, 

in the framework of a semi-classical approximation, 
4 

to any cyo and D-2. 

In particular the smooth transition towards the perturbative regime at small 

cro is emphasized. Finally, in Section 5 we discuss the physical picture 

emerging for inelastic diffractive exclusive production. This qualitative 

discussion may be read separately. 

We turn now to recall the results obtained for the elastic amplitude 

for (Ye > (Y . 
C 
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II. SPIN MODEL AND PRODUCTION AMPLITUDES 

In this section we recall the derivation of the spin model analogue of 

RFT together with the features which are needed for the present calculation. 

We then identify the operator of this model which corresponds to the 

mass insertion operator of RFT and which is relevant for the calculation 

of the inelastic diffractive amplitudes. 

2.1) Spin Model Derivation and Green’s Functions 

The RFT Hamiltoniant in a lattice in the impact parameter space 

(intersite distance a) is 

H = ~H.(“)+$~ 
i l a (i,j) 

qipj 

H,(O) = IJrl,p, - ka-D12 
1 1 1 qi(Pi + qi)Pi 

(2.1) 

(2.2) 

where (i, j) are next neighbor points in the b space lattice of D dimension; 

,I is the pomeron slope, A is the (real) triple pomeron coupling and 

p =QO - 1. The fields piqi are related to the Gribov fields by (5 =:a) 

‘j = i aD”$(Kj) , qj = i aD’2++(b;) , (2.3) 

where i is introduced to make the coupling in 2. 2 real, and simplify the 

treatment of phases. 

The procedure of Ref. 3 for attempting a solution of RFT was to first 
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solve the single site dynamics [i. e., LY’ = 0 in 2. I] and then introduce 

the intersite interaction. The first step of this program is greatly simplified 

by the fact 
10.11 that the two lowest states of the single site 

Hamiltonian Hi(‘) are almost degenerate for large 

24-e -i(‘,)’ 

(t): the energv gap is 

(here and in the following we will often neglect to write 

explicitly a. Recall, however, that Xa 
-n/ 2 

and cut/a2 are dimensionless. ) In 

fact in this case one can neglect all other higher excitations and approximate 

any (local) operator with the matrix elements on a base truncated at these 

two states. It was found3’11 that the matrix elements of Hi (0) and the fields 

piqj have the form 

Hi0 = 2A (; ;) = 2h [’ ;‘ji = 2AZi , 

(2.4) 

=E 0 -1 
pi A 0 1 ( > 

= L4p 
A i ’ ‘i 

= ;(; ;) = ;Q. > 1 

and the RFT Hamiltonian in 2. 2 is approximated by the Hamiltonian 

H = 2ACiZi + J c P.Q. , 
(i, j) 1 1 

J = ,I kk aD -2 , 
CT 

(2.5) 

which defines our spin system analogue model. 

A feature of this model shown in ref. 3 is that the dynamical system 

undergoes a phase transition for x =a- 
J 

= xc; for x > xc the ground state 
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$. E ni(& “40 = 0 , pibo = 0 (2. 6) 

is unique while for x < xc it is twofold degenerate. However even in this 

case $I~ is one of the two ground states since H I#J~ = 0 for any x. The 

phase transition is of second order type since the order parameter o(x), 

which turns out to be the transition element between the two ground states, 

vanishes for x -x 
C’ 

The spin system Hamiltonian in 2.6 is pseudoHermitian, in fact 

there exists a metric operator 

M : H.‘.’ 
i 

13 ’ 

such that 

MPiM = Qi+, MQiM = Pi+, MHM = H+ . 

This entails that if 6 is a right eigenstate of H, the corresponding left 

eigenstate is 

T = $+M 

(The existence of this operator is a consequence of the symmetry of 

RFI with respect to the p, q’ interchange which corresponds to the 

beam-target interchange in the hadronic process. ) 

The important fact that I#B~ is an exact ground state for any x implies 

that there is an unambiguous definition for the Green’s functions of the 

theory which satisfies cluster decomposition and is continuous in x. In 

(2. 71 

(2.8) 

(2.9) 
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particular for the two point function we have 

G(~,Y)= -<To 1P. eeBYQj IQ,>, g = (7 - :)a . 1 

Moreover this definition maintains the symmetry 2.9. (The normalization 

of the Green’s functions is such that G(B, Y = 0) = 1, so that the factors t 

are absorbed in the couplings with external particles. ) A feature of this 

theory is that the other (n,m) Green’s functions are just given by 2.10. 

In fact, in the truncated base for fixed n we have 

(2.10) 

p; = (tjs , q; = (:fQi 

neglecting terms of order e -1/2oJX)2. (This however is no longer5 valid 

for n-m.) 

As explained before, we study in Section 3 the diffractive production 

amplitude for the particular case of x = 0 and D = 1. The reason for this 

calculation is that in this case, as shown in Ref. 4, the Green’s functions 

of the theory can be exactly calculated. This is because the equation of 

motion of the box state (see Fig. 4) 

5 
P. m- im i 

xo iv=pxl i;m xO1 
i <I 

(2. ii) 

x; = (i), Xii = (-J (2.12) 

can be exactly integrated to give 
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e -HyP m =n$on$zo f ty)f,, cy)5P-n, m+n’ n (2.13) 

where f,(y) is a Poisson distribution centered at n = Jy, 

f,(y) = e 
-Jy (Jy)n 

n! 

In fact in the matrix element in 2. 10 we have a state of this type 

Qjao = 6,-$j , 

and using 3.13 we have 

(2.14) 

(2.15) 

G(B, Y) = ‘ToPie 
-HY$, j , = f f fn(Y)fn,(Y)<;oPil;i -n, j+“‘>. (2. 16) 

n=O n’ =O 

Noting that 

PiXO’ = 0, PiXll = x*1 ) 

in Ref. 4 it was obtained 

G(B, Y) = 
nzFi-jln 

f (Y) tz 0 (JaY - IBI ’ 

which is a disc of opacity 1 expanding in Y with velocity 

(2.17) 

(2.18) 

v=Ja . (2. 19) 
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This solution can be generalized for any D or for x < x 
C’ 

In fact, by 

4 
using a semiclassical approximation in which x 

c = 1, one obtains that for any D 

and x < 1 the Green’s function G is a disc expanding with velocity 

v(x) = Ja(l -x) 112 2 
and opacity o (x) where o(x) is the order parameter. 

This semiclassical approximation will be used in Section 4 to compute in 

general the form of the diffractive production amplitudes. 

In the large x region one can attempt a perturbative calculation and 

4 
in the semiclassical approximation the Green’s function in 2. 10 makes 

a transition to a Regge pole with intercept Z 

F- 1 = 2J(1 -x) , 

smaller than one (x > 1) and slope 3 

Z’ = Ja2. 

(2. 20) 

(2.21) 

This fact gives further support to the conjecture already discussed that 

the spin model of Eq. 2. 5 we are working with is intimately related to the 

full RFT and describes the interaction of Reggeons with parameters 2.20 

and 2. 21. It is not obvious, however, how the identification of these two 

parameters survives in the continuum limit of this spin model (a * 0). 

We now further elaborate this point. 

2.2) Relation of the Spin Model with RFT 

All our calculations of fully diffractive cross sections will be done in the 

spin model of RFT which was derived in the large (Y o region or small A. A 
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relevant question which arises is whether our results can be related to 

the features of RFT not only for large a0 but for any czo. The expectation 

we have is that the spin model has the same features of RFT for any LY 0 . 

This stems from the hope that the two theories belong to the same class of 

universality and that in the semiclassical approximation for x > x c the spin 

model describes interactions of Reggeons. However when we consider the 

continuum limit of the spin model a problem arises in the case x > x 
c i.~ e. , 

cyO is small. This is probably related to the improper treatment of ultraviolet 

divergences. 

In the spin model there are two dimensionless parameters, J and 

x = A/ J, and the only parameter which sets the scale is the lattice size a, 

which in RFT plays the role of an ultraviolet cut off. This is due to the 

fact that the original dimensional parameters (Y’ and X enter in dimensionless 

combinations A and J once the truncation procedure in 2.4 is performed. 

In the region x < xc the limit a -rO can be prop,erly done. In fact 

in that case there ts only one relevant parameter in the theory which is 

the velocity of the expansion of the disc v = Ja. In this case it is 

possible to maintain unchanged the dynamics of the system in the limit 

a - 0 provided we keep v(x) fixed in the limit. For x > xc (small LYE) 

instead the limit gives rise to a problem. In fact we have seen in the 
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semiclassical approximation that the spin model describes the interaction 

of Reggeons with intercept and slope given in 2.20, 2. 21. It is clear that 

in this case these two relevant parameters cannot be kept fixed in the 

a + 0 limit. This of course brings some shade on the relation of our results 

with RFT in the case x > x 
C’ 

even though it is comforting that we obtain 

formally a Regge pole. 

2. 3) Matrix Elements for Diffractive Production Amplitudes 

Before entering the detailed computation let us briefly recall the type 

of RFT diagrams which describe the fully diffractive inelastic processes 

we are interested in. In absence of cuts, the amplitude is represented by 

the ladder-like diagrams of pure Pomeron exchanges (Fig. 2). When a 

triple pomeron coupling is turned on, one has to sum absorptive type 

diagrams such as in Fig. 3a, 3b and new type of production amplitudes 

such as Fig. 3c. In RFT the sum of all these diagrams are described 7,a 

by the matrix element 

Gln)(g 
n 

Y* b’ > . p’ Ye’ = <o[ @,YY) Tr 
i =1 

Y>yn>...> yl>o , 

where yi, ci are the rapidity and impact parameters of produced particles. 

In addition to these diagrams one has in general to consider the case 

in which more pomerons are attached to the external particles, as in the 

diagrams of Fig. 4. These contributions are described in RFT by the 
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++ 
matrix 2. 22 where the fields Jl+(??,Yl and + (0, 0) are substituted by their 

powers. For a0 > (Y their contribution to the hadronic S matrix cannot 
c 

be neglected, in fact in the spin model, due to the property of eq. 2. 11, 

they are of the same order as G 
(n) (eq. 2. 22 1. The full S-matrix is 

given by their infinite sum; it is complicated by the fact that eq. 2.11 does 

not hold for n +m . It can be shown however that the sum is finite provided 

that the matrix in 2. 22 is finite. For this reason in the following we 

consider only the matrix element in 2. 22. 

We want now to establish the form of the production amplitudes in 

the spin model. To this purpose we have to identify the operator of the 

model which corresponds to themass insertion $+$ = -qipi in 2. 22. This 

can be obtained by computing in the truncated base of H. (0) the matrix 1 

element of the local operator qipi. In a way similar to the one for the 

calculation of 2.4 we obtain 

lJ”liPi = 2A(& y) = 2q2 zi . (2. 23) 

Note that the truncated matrix of the operator qipi is not the product of 

the two truncated operators in 2.4. In fact QiPi = 0. This means that 

in the matrix elements of qipi intermediate states with higher excitations 

are contributing to give the finite result 2. 23. 

The identification of the mass operator with Zi in 2. 23 is also consistent 

with the fact that for large x the spin Hamiltonian describes the interaction 
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of Reggeons with the intercept 5 (2. 20). The mass operator should then 

coincide with the operator which in the Hamiltonian is proportional to the 

parameter 2A, i.e., with Zi. 

With this identification the diffractive production amplitudes are 

given by the following matrix elements of the spin system 

Gcn) = - <$ IP. e 
-WY - ynn) -WY, - yn _ 1) 

0 1 zP e . . . 
n 

(2. 24) 

withy > y > . . . > y 1 > 0 and c n n 
= “a, E’ =ya. (Again the 

normalization is such that when all y’s are zero G (n) = 1 . The coupling 

constants of the external particles have to be independently added) 

III. PRODUCTION CROSS SECTIONS FOR 
A = 0 AND D = 4: EXACT SOLUTION 

In this section we compute the matrix elements 2. 24 for the inelastic 

diffractive amplitudes in the special case A = 0 and D = i. Nature being 

at D = 2, one may wonder why to study this special case. The direct 

appeal in the D = 1 A = 0 case is that the spin model can be exactly solved. 
4 

In any case the x = 0 limit would start to give us indications of the general 

features of these amplitudes in the x< x c region which will be investigated 

in the next section. Moreover, this case provides then the edge of the trend 

leading to the x = xc case and beyond, into the perturbation regime for 

x >x 
C’ 

From the point of view of satisfying s channel unitarity constraints, 
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it should be pointed out that the FK disease turns more acute the smaller 

D is and the larger a0 is. Thus a resolution of the FK paradox for D = 1 

strongly indicates that it is resolved also for large D. 

The first case we consider is the inelastic production of one additional 

particle, for which the amplitude is 

G(*)(~y; b) = -<To 1 pi e -HW - dzg e-HY~o 1 cjo> 
(3.1) 

with B = ia, b = Pa. F’rOm eq. 2. 15, 2. 13 and its conjugate equation 

(g = cfM) we obtain 

G(1) = - ii 
n, n’, m, m’ =O 

f,(Y - y)fm, (Y - Y)f,(Y)f,, (Y) 

(3.2) 

<Ei -m, i +m’1Z1j5-n, n’> , 

where f,(y) is the Poisson distribution defined in 2.14. Since 

e P 1 e 
zPxO = 0, zPxi =x -x 

1 0 ' (3.3) 

we can compute the matrix element in 3. 2. In fact from 3. 3 we have 

that P should belong to the intervals [i - m, i + ml] and [-n, nl], and 

in this case Z eon the state 5 gives again 5 minus a state with a hole at 

I. Moreover, taking into account that the scalar product (with the M metric 

in 2.9) of two box states is different from zero only if they do not overlap, 

we obtain 
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<s’ -m~i+m’lz,/g-n’d> = -(6p,i-m6p,d +6p,i+m16j, -n>’ 
(3.4) 

The meaning of this equation is clear: Zp has to act at the edges of the 

two box states 5 and 5 in the configuration in which they do not overlap 

(see Fig. 5). Finally for G(f) we obtain 

G(l)(BY- by) = f I 2 i _ JY - y)fp(y) + fp _ iw - Y)f- P’Y) . (3. 5) 

The meaning of this result becomes clearer if we go to the continuum limit 

of a * 0 in which the Poisson distribution f,(y) turns into the Gaussian 

f,(Y) - 
.-(b - Jay12/2Ja2y 

2 II2 
( > 2vJa y 

(3.6) 

which is centered around b = Jay. In order to have a meaningful limit 

we have to keep v = Ja fixed. In this limit we have 

GCi)(B,Y: b,y) = e 
-(B - b - v(Y - yl)2/2Ja2(Y - yl .-b’/ 2Ja2y 

(2rrJa2(Y - ~))f’~ 
2 112 

( ) 
+(B”-B, b-‘-b). (3.7 

2nJa y 

Here is a first sign of a peculiar difference between elastic and inelastic 

diffractive amplitudes. While for the elastic amplitudes the two particles 

interact for simpact parameter B in the disc B2 5 v2Y2 (see eq. 2.181, 

in the inelastic case the amplitude is peripheral. For a given Y and y the 
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inelastic amplitude is different from zero only for 

b N vy, B z VY or b 2 -vy, B fi -vY . (3.8) 

Outside this region in b and B the amplitude G (1) drops to zero with a 

Gaussian tail. We will see that this peripheral structure persists in higher 

multiplicity cross-sections and it is actually this depletion of the available 

production phase space which cures the FK disease. 

The next step is to calculate the rapidity differential cross section. 

The integration (or summation) over the impact parameter phase space 

leads to 

do(‘) 
dy = s 

dB db lG(‘) I2 = c c lG(f) I2 = eVzJyIo(2J(Y - y))IO(2Jy) (3.9) 
i 1 

We note the following points: 

(1) IO(x) is finite for x = 0, and behaves for large x like 

X 

r(x)-% . 0 
x-m 4x 

For large rapidities differences, we will therefore have 

do 
dy= (3.10) 

and consequently the “middle” particle tends to be produced near one of 

the leading particles. 
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(2) Having a simple factorizing form in the t channel after all types of 

triple-pomeron absorptions are taken into account is rather surprising. If 

the generalization to n particle production would be 

du n 

dyi...dy = i=2 0 n 1 PJ(yi-yimi)l , 
n 

a violation of s channel unitarity would be imminent. It will turn out that 

factorization will indeed be achieved but the object iterated in the t channel 

will not be function IO. 

The total c3 can be calculated exactly in this case and is given by 

“3 
= 2e 

-Jy sm 2Jy. (3.11) 

aO 
- 1 

The cross-section which before addition of cuts increases like s 

has been tamed and increases toward a constant. 

Let us now consider the general inelastic amplitude G (n)in 2 24 . . 

This expression and its evaluation can be simplified noticing that if B > 0 

(B < 0) only the evolution of the right (left) edge of the box in Qo$o 

(eq. 2. 15) is relevant in the evaluation of the Green’s functions. This can be 

deduced from the discussion of eq. 3.4. Similarly if B > 0 (B < 0) only the 

left (right) edge of the conjugate box in ToPi is relevant. This suggests to 

introduce the states 
4 

RI= n 
i i 1 

,L=lr i i 

i <I i<l xo (3.12) 
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which allows to write for B > 0 

(n) -HO’ - yn) 
(B,Y: bpy,) = -<tie ?e e 

-WY, - yn _ *) 
G 

n 
. ..Ze e 

-Hyi 0 
R> (3.13) 

1 

where B = ia, b = Pka. For B < 0 we have to interchange L and R. The 

evaluation of G(” is essentially simplified by the observation that, as 

was the case in 3.4, the operator Zp should act only at the border of the 

disc. Namely, in the evaluation of the state in 3.13 (see Ref. 4). 

-H(y2- Y+) -HY1 0 
e zP e R +m(yi)e-H(Y2 -“) Zf R1f +m , (3.14) 

1 
=m$off 

1 1 

only the term m = 0 gives the relevant contribution. In fact we show in the 

Appendix that the rest of the sum evolves to zero like e 
-2J(y2 - yl) 

and 

furthermore contributes to the matrix element of G (n) with the tail of the 

Poisson distribution which provides an extra e 
-J(y2 - yf) 

coupling. We 

can neglect these contributions on the basis that in the continuum limit 

a+0 we have instead to maintain v = Ja fixed so that e 
-3J(y2 - ~4) 

- 0. 

In any case even for a finite these exponential contributions are of the type of 

nonleading Regge pole exchanges. 

By using the fact that only m = 0 in 3.14 is contributing and taking 

into account 3. 3 we obtain 
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e 
-H(y2 - Yi> z 

41 

e-HyiRo -u f (y )e-H(Y2 - Yi)(El% _ R 41 - ‘> 

4, 1 
(3.15) 

-* f4 (Y ) c f, Y2 - Y* i 1 nyo[ ( )-fn-i!Y2-y*~4i+n' 

It is clear that this mechanism generalizes in the evaluation of G 
(n) 

and 

gives 

Gtn)(~,~; b ga) 

n 

= fi-4 (y-y,) TT Afe _ p 
n k=2 k k _ i(yk - ‘k - ,jfP ltyf) 

(3.16) 

+ (i + -i, i k 
- -4 

k) ’ 

where tin(y) is the difference of the two Poisson distribution centered at 

n = Jy, n =Jy+f, 

Af,(y) = f,(y) - f, _ ,(y) , 

which in the continuum limit becomes 

Af,ty) - F 
e-C b - vy12/ 2Ja’y 

(2rJa2y)i’2 * 

(3.17) 

(3. 18) 

The physical meaning of this result for G (n) IS the following. The inelastic 

diffractive amplitudes are different from zero only for 
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BZ vY, b pzz vyp 

B- -vY, bp5 -vyp 

for B > 0, 

(3.19) 

for B < 0. 

All impact parameters are aligned and an ordering in rapidity implies an 

(n) 
ordering in impact parameter. Outside this region the amplitudes G 

drop to zero with a Gaussiantail. The fact that the produced particles 

are very rigid in their impact parameter positions will again be the key to 

the resolution of the FK paradox. 

The rapidity differential cross sections are given from 3.15 

do 
= dyi . . . dyn s 

dBdb+... p &, [ G(“) 1 ’ = c c . ..c 1 Gtn) 1 ’ = 
i P1 P 

n 
(3.20) 

e -2JY1(& 2J(Y - y,) “, 
i =2 

“(yi - yi _ i)Io(2Jyi) 

where 

F(y) = Io(2Jy) - li (2JY) . (3.21) 

The factorized form is indeed maintained even in the presence of absorptive 

processes. However the object iterated in the t channel is F(y) and not IO. 

The crucial difference is that for large rapidity separation 

1 1 e-2JYF(y)- - - 
YG’ 

(3.22) 
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so that 

do 
dyl...dyn cy (Y - ylny2 

(3. 23) 

The extra factor I/y has striking physical consequences. It causes the 

rapidity difference between each two adjoint inelastically produced particles 

to remain finite. They will form a cluster which will tend itself (as we 

learn from the G(i) case) to cluster near one of the two leading particles. 

The physical prediction of the unimportance of the many large-gap type 

processes, is a unique feature of RFT generated dynamically by absorption. 

The additional depletion of phase space (this time reflected in the longitudinal 

part) leads to constant n-particle production cross-sections. This can be 

estimated by integrating eq. 3. 20. In fact the Laplace transform of un(y), 

obtained from 3.20, is given by 

c;(E) cx g ““fz[,p,-$,]” ’ (3. 24 

where p = 25 - E, s = (E(E - 45)) 112 , E < 0, and a coupling g2 for producing 

particles has been introduced. Thus all on(Y) are asymptotically constants. 

The total sum of these diffractive cross sections is obtained from 
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g(E) (Y -+ Sk +P) i =- 1 

S sb +-p) - g2(s - El E 25 - g2 
(3. 25) 

which leads to a constant as long as g2 < 25. These fully diffractive processes 

not only do not violate s channel unitarity, thus resolving the FK paradox, 

but their relative ratio to the total cross section is vanishing asymptotically. 

One can also calculate the average multiplicity of these processes by taking 

the derivative of s(E) with respect to g, it turns out that the average multiplicity 

is constant. This supports the view we discussed in the Introduction that 

the main bulk of the inelastic processes is not diffractive, and particles are 

mainly produced in short range type of processes or intermediate state of 

the bare pomerons as is described by the cut Reggeon Field Theory. 9 

A subtle questionmay arise due to the factthat we have neglectednon- 

leading terms vanishing in the a -0 limit (see Appendix). Onemaywonder 

whether the limit a + 0 commutes with the sum over all produced particles, 

giving rise’ to the suspicion that the sum over the neglected terms may give 

the leading output result (as is the case in the original FK treatment ). 

However there are some features which distinguish this case. Beginning 

from a “bare” cross-section behaving like s 
LYo - 1 

, we reach constant on(s) 



-24- FERMILAB-Pub-761 74-THY 

thus obtaining in any case a very large negative renormalization, on top of 

it all non-leading terms omitted in the calculation were non-leading by 

powers and not by logarithms. The leading form itself does not contain a 

signal for a possible violation (unlike the usual FK case). All this leads us 

to trust a summation within the framework of our spin model. For rye =ec 

this problem has been solved’ and also there no new singularity occurs. 

After studying in detail this case we turn to discuss the modifications 

occuring for D # 1, x f 0. 

IV. PRODUCTION CROSS SECTION FOR 
A f 0, D + 1: SEMICLASSICAL APPROXIMATION 

For A f 0 and/or D t 1 we have no explicit solution. In the case 

D = 1 and x = A/J small (x < xc) a perturbative calculation can be done 

around the solution x = 0. In D = 2 the problem becomes far more complicated. 

Instead of proceeding with this study, in this section we compute the 

production amplitudes using the semiclassical approximation introduced in 

Ref. 4, which presumably leads at least to a qualitative understanding of 

the general features. 

Let us start by recalling the semiclassical approximation for the 

functional state 

b[(yj] E l-x:, , x0 = (?) I 
i 1 

(4. 1) 

with 
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(,&-I) = 1 

Gop,,rnC~l) = urn 

Go% Pm,rnC@Jl) = “J”m P fm. 

If one makes the approximation4 of neglecting correlations in the time 

evolution, i. e. , 

(TPP e 
0Im -HY$[u]) z ($oP,e-“$[u]) (OoPme-HyS[o]). 1 I m , 

we have the following time evolution equation for the state in 4. 1 

ewHyd [(DJ] = 4 [("i(y)j] , 

(4.2) 

(4.3) 

(4. 3 1 

where ~(2, y) = city) satisfies the classical equation 

6 u(b,y) = ZJo(by)[1 - x - o(by)] + (1 - eC’gy))Ja2Vt UC&y) . (4.4) 

Before passing to the calculation of the production amplitudes we 

recall also the feature of the solution of 4.4. The critical value xc turns 

outtobex =1. 
C 

For x > 1 the relation at large y behaves as a Regge pole 

propagator with intercept 1 + ZJ(1 - x) smaller than one 

25(1-x) e 
- b2/ 2Ja’y 

u(b;y) Z e 
( Ja2yID’ ’ 

x>l, (4.5) 



-26- FERMILAB-Pub-76/ 74-THY 

the slope being Ja’. For x < 1, a(b,y) is a disc with opacity q.(x) = 1 - x 

and expanding with velocity v(x) = Jafi : 

o(by)” D(X) = i -x for b2 < v2(x)y2, x<l. (4. 6) 

At large b, cr(b, y) vanishes matching the perturbative solution in 4. 5, 

i. e., with a Gaussian tail. We obtain then for x = 0, D = 1 the same 

feature of the expanding box states we have discussed in the previous section. 

Given the time evolution of the states in 4. 1 we are now in position of 

computing the diffractive production amplitudes in 2. 24. 

For the single particle distribution we have (g = Ta, b’= ?a) 

G(l)&: Gy) = -(TopjebHcY - ‘)Zp e-HyQo40) 

(4. 7) 

= -(4[{oj _ ijle-H(y - ‘)Zp e-“‘4[{ui)]) 

with oi = 6. 1, 0’ 
Taking into account the equation of motion of the state 

4 [u] we have 

G%, Y: b’; y) = -(4 [{y _ ify - y)]Zp4[{oi(y){] j 

and from 3. 11 we obtain the final result 

I$)(@; i&j = ‘J. J _ p - YP,(Y) i ; ~ (1 - cj _ i(YbJi(Y))l 

(4.8 ) 

(4.9) 
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The behavior of this single particle amplitude can be obtained from the 

expressionfor u(b, y) in 4.5 and 4.6. 

Let us consider first the case x > 1, where o(b, y) is a Regge pole 

with intercept smaller than one (see eq. 4.5). To the leading order we 

obtained from 4.9 

G(l)(gy; b', y) z:a(z - 2, Y - Yk& Y) 

u e2J(1 -x )Y e 
-(g - c)‘/ 2Ja2(Y -y) e-b2/ 2Ja’y 

(Ja’(Y - y) D/2 2 I312 ’ 
x < 1 . (4. IO) 

(Ja y) 

This amplitude corresponds to the production of the particle via the exchange 

of the Regge poles of this lattice theory as in Fig. 2. Nonleading contributions 

to 4.10, coming from the product in 4.9 and from corrections in 4.5, are 

given by Regge cuts. 

Let us consider how the case x < 1, where ~(2, y) is an expanding disc, 

eq. 4. 6. In this case the expression in 4.9 is essentially different from 

zero in the configuration in which the two discs o(Gy) and c(g -z, Y - y) 

do not overlap and are tangent, i. e., where (see Fig. 61 

b2 z V2(X)Y2 , (2 - i;J2 =! v2(x)(Y - yJ2 

B’ .z>o . 
(4.11) 
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In fact the product 1~~ = e in 4.9 is different from zero if the two discs 

overlap only in a finite number of points, n, in the lattice 

rri # I(’ - Oj _ i (y y)uii(y)) = (1 - ~2(x)) n - I > - (4.12) 

i.e., in a region in the b space with zero measure in the continuum limit. 

The spread around the points in 4.11 is given by the Gaussian tail of 

the disc in 4.6 and we have then 

G(‘)(B;Y; by) 5 cr2(X) e 
-(lb1 -v(x)y)‘/ZJa’y .-( I~-~I-v(xl(‘Y-y$2/2Ja2(Y -y; 

(Ja2ylD” (Ja’(Y - ~1)~” 

(4.12) 

.eG*‘i;) . 

For D = 1 and x = 0 this semiclassical approximation coincides with 

the exact result in 3.14. This gives further support for role of the semiclassica 

approximation as a reliable probe of the theory for different x and D. 

Integrating 4.12 to have the differential cross section, we obtain 

do 4 
dy 3 D(X) 

((Y - yl)y)D/2 
(4.13) 

which generalizes to x < 1 and any D the result of the previous section. The 

physics of the process is then equivalent to the ones we discuss in the x = 0 

D = 1 case. 
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The generalization to the n particle diffractive amplitudes is straightforwar 

in the case x > 1. In fact in this case the time evolution of the o[c] state 

is essentially given by the Regge pole propagator of eq. 4. 5. It is easy to 

see, using the property 

z.xJ d j = c-x 
J fl. J jdT ’ .l 

(4. 14) 

and that a(by) is a Regge pole, that the leading contribution to G (n) 1s given 

by the perturbative form in Fig. 2 in which particles are emitted via the 

exchange of a simple Regge pole. 

The calculation of Gtn) for x < 1 is more complicated, and for n > 1 

the case of D > 1 has some essentially different features than the case D = 1. 

The operator 2 on the state $[u] gives 

zp 4[c] = b[~l - $1 IIs1 
‘1 1 

(4.15, 

where the state o1 
1 

is obtained from 4 by setting the field oi = 0 at i = P 
1’ 

As in the previous section we have a vanishing contribution to G (n) 
when 

the point 1 1 is well inside the disc of oi, due to the fact that the hole gets 

gradually washed away, while its position is unchanged (see Eq. 4.4). This 

feature presumably holds also if the hole is inside but close to the boarder, as long 

as the boundary condition, i. e., the shape of the holed disc, is smooth 

enough. The relevant contribution comes then again only when 1* is at 

the border of the disc, i.e. 



-3o- FERMILAB-Pub-761 74-THY 

Ir;, 1 = IY$ y v(x)yl (4. 16) 

and the state $m can be represented as in Fig. 7. The difference between 
1 

the D = 1 and D > 1 cases becomes clear from this figure. In fact for 

D = 1 the state 4 is a box state and ba is also a box state with a smaller - 
1 

length. The two states in 4. 15 then evolve in the same way giving the same 

result for GCn) of the previous section, with a velocity given by v(x) = Ja(l -x )‘. 

In the case D > 1 instead the state $1 is a disc with a hole at the border, 
1 

which tends to move out in the process of evolution (see Fig. 7). This 

implies that the state 4. 15, evolved in time 

-My2 - Y,) -WY~ - Y1) 
e zp 4~Col = e 

i 
$[ol (4.17) 

1 

is for D > 1 exponentially dumped in y2 - yl. On the other hand the properties 

+ -9 + + 
of alignment of the various bj = aja with B = ia and the fact that a rapidity 

ordering implies an impact parameter ordering 

IpJj 1 r v(x)yj; I ZI 3 v(x)y (4.18) 

remain even for D > 1. In fact in order not to have a zero matrix element 

of GCn’, Zp has to act at the position where the hole, created by the previous 
1 

ze ’ is propagated; and so on. 
1 

The features of the diffractive inelastic amplitudes for x < xc can be 

then obtained with the following pictorial time evolution in the b space. The 
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initial particle at time y = 0 and b = 0 create a pomeron which makes a 

disturbance on the vacuum state $. at b = 0 which propagates in time as a 

disc of radius v(x)y. This disc leads to the hadronic disc in the elastic 

process. However if a particle is diffractively emitted at time yi and b+, 

the corresponding mass operator can act only at the border of the disc 

expanded for y1 time so that bi% v(x)y,. AS a result of this operation, we 

obtain a state corresponding to the original disc minus a state corresponding 

to the disc deformed by a hole at bl (Eq. 4.15). This hole remains at the border 

during the propagation. If another particle is diffractivelyemittedat y2, g2 the 

mass operator must act again at the border of the expanded disc, i.e., 

b2 z v(x)y, and at the position of the propagated hole produced by the first 

particle so that gdg2 should be allowed. After this operation we remain with 

the difference of two states which again corresponds to the disc and the disc 

with a hole at b2 so that the same mechanism works for all the other emitted 

particles. Finally we have that apomeron has to be annihilated by the other 

interacting particles at Y and gand this can be done again only at the border 

of the disc B = v(x)Y and at the position of the last propagated hole. As 

a result the rapidity differential cross sections are given by 

do 
= 04(x) 

1 
n 

dyl.. . dyn ,x<l, (4. 19’ 
(Y - Y*’ D/2 i’12 

dYt - Yi _ *!*2 

Yl 
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where for D = 1, g(y) is decreasing as a power y 
-312 

while for D > 1 it is 

decreasing exponentially. 

V. SUMMARY OF RESULTS AND PHYSICAL PICTURE 

In the simple pole model the only diagrams contributing to inelastic 

fully diffractive production are the ladder-like diagrams appearing in Fig. 2. 

In that case the cross-section is given by 

do 
dyl...dyn = 

So0 (5.1’ 

where a0 is greater or equal to one. Unitarity is clearly violated for any 

QO > 1. However it was shown6 that even for a0 = 1, s channel unitarity is 

violated. This happens because the Gaussian structure in impact parameter 

is reflected by a damping factor of only l/yi associated with each rapidity 

difference, yi. Thus the iesulting structure in rapidity will be that in which 

large gap configuration is favored. The introduction of absorptive effects 

in the form of the triple-pomeron interaction changed dramatically both the 

impact parameter and rapidity structure of these production processes, for 

the case a0 2 (Ye. 

For a0 c > ~2 (i. e., x < xc) a peripheral picture emerges in impact 

parameter space. For a given set of rapidities yi and total rapidity Y, 

a rigid positioning is imposed on the corresponding impact parameters. 

Each bi is constrained to be at 
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bi z V(X’Yi ; B 5 v(x)Y . (5.2) 

Moreover all particles are alligned in the same direction. This is in sharp 

distinction both from the Gaussians of unabsorbed Regge poles and the disc 

structure of the fully absorbed elastic amplitude. 

As a result of this depletion in impact-parameter phase space the 

differential cross-sections are damped in the rapidity gaps. We obtain 

du 1 
n 

dy4...dyn cy u4(x’ 
(Y - Y,’ D/2 

r g(Yi - Yi _ 1) 
i =2 

1D,2 (5.3) 
(Y,’ 

where for D = 1, g(y) decreases like i/y 312 , while for D = 2 the depletion 

is even stronger and g(y) is exponentially decreasing. The rapidity structure 

of the absorbed cross-section (Eq. 5.3) is very different from the rapidity 

structure before absorption was taken into account (eq. 5. 1). The damping 

in g(y) is strong enough to cluster the produced particles. The leading 

configuration will eventually have as small as possible large gaps. The 

energy behavior of each un is constant. 

Turning to the contribution of these processes to the total cross-section, 

we find that it is constant in energy and its ratio to the total cross-section 

is vanishing, thus resolving the FKparadox. The absorptive effects 

turned out to be larger the larger the transverse dimension. It is interesting 

to note that in the extreme case D = 0, as long as a0 (i. e. the gap A) is 

finite, the FKparadox will not occur due to the non-degeneracy of the ground 

state. In fact for very large (Y o the cross-section on behaves as 
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0 = 
(AY? .-ZAY 

n n! (5.4) 

Thus only for n = 0 will the cross-sections be non-vanishing for A -0. 

The FKparadox is avoided here without the help of b-space depletion. 

For very large a0 (i. e. x = 0) th e model was exactly solvable, a 

semi-classical approximation enabled us to extend the results to x # 0 

leading to Eq. (5.3). A signel for a change in character as x increases 

appears already in Eq. (5.3). In fact o(x), appearing in the equation, is 

the order parameter which vanishes as x tends to xc. 

We have not treated in the spin model the case x = xc. This case, 

however, should smoothly join the distribution in (5.3) with the perturbative 

one (for (Y < 1). This case was treated for the full RFT in ref. 7. The 

corresponding relation to eq. (5. 3) is more complicated due to the fact that 

it does not simply factorize. Nevertheless it turns out the all rapidity intervals 

are damped, the leading configuration has only one large gap and the energy 

behavior of each on is like that of o 
el 

which (in all approximations) decrease 

logarithmically by itself and constitutes a decreasing ratio of the total 

cross-section. It was also shown that the FKparadox does not arise even 

when summing over all multiplicities n. In this case increasing a0 toward 

ac one can trace the effects of the absorptive mechanism to the screening 

of the produced particle vertices. It would be interesting to understand 

exactly how this picture evolves when one decreases (Y o to cc. 
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APPENDIX 

In this Appendix we show for D = 1. x = 0, that in the evaluation of the 

.(n) amplitude, the mass operator Zi should act only at the border of the 

box states, thus leading to the y, b ordering and to the factorization of the 

cross sections. 

Let us consider the contribution to G (2) 

Gc2l -WY - y2) 
= <?;Je 

=i2 e 
-WY, - yl) 

z1 e 
-Hy1 0 

R> 
1 

(A. 1’ 

.-i2-n2 

+ n (Y - Y21’L-J 

f +n 

zP e 

-My2 - Y1’ 

z1 R 
1 5. 

2 2 2 i 

The time evolution of the state Z R 
j1 +n 

Ii 
* is different whether n 

1 =o 

or ni > 0. In fact if n1 = 0, the hole created by Zp is at the edge of 
P 

the state R ’ 
I 

I e P -1 
Z R1 =R’-R’ , 

II 
(A. 2) 
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thus the hole moves with the edge. 

For n1 > 0 the hole created by Zm inside the state R 
PI +n 

1 
remains 

1 
in the same position during the propagation. In fact the equation of motion 

is (x = 0) 

HZ1 Rm z ze J(Rm-Rm+‘)+2JRm’ 
c 1 m>P (A. 3) 

which gives (n, >O) 

-H(y2 - yl) m e1 + nl + m 
e ‘e R 

el +nl -2J(y2 - yl) 
= e c fm(y2 - Y,)Z~ R (A.4 

1 m =O 1 

This equation implies that the hole at e1 remains in the same position but 

it is exponentially filled up during the time evolution. Moreover it is easy 

to see that only the m = 0 term in A. 4 is contributing to the matrix element 

.(2) . Thus, the contribution in A. 1 with ni > 0 is damped with respect to 

the contribution with nl = 0, we have kept in 3. 24, by the factor 

-2J(y2 - Y& -3J(y2 - yl) 
e fo(y2 -yl) = e (A. 5) 

In fact, on the tail of the Poisson aistribution we have fo(y) = e -JY . 
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FIGURE CAPTIONS 

The state 5 e,m m 
: TI Xi ,il Xi ,TI Xi. 

ice l=e l>e 0 

The ladder diagram representing n+ 2 particle 

production by multi-pomeron exchanges. 

a) - b) absorption corrections to simple multi- 

pomeron exchanges c) a new production process 

induced by the triple pomeron coupling. 

Contributions to the production process in which 

more than one pomeron is attached to the external 

particle. 

The states 5-n,nl and zi’-m,i’+d between which 

the transition element of the mass insertion operator, 

Ze, is calculated in Eq. (3.4). 

In the case 02+3, for D = 2 a produced particle 

with rapidity y will have an impact parameter 

b = Vy. All particles are alligned in impact parameter. 

At D= 2 a state with a curvature at the edge evolves 

into a complete disc, with the “dent” at the edge 

disappearing, this behaviour is different for D= 1. 
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